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Moderately favourable pressure gradient turbulent boundary layers are investigated
within a theoretical framework based on the unintegrated two-dimensional mean
momentum equation. The present theory stems from an observed exchange of balance
between terms in the mean momentum equation across different regions of the
boundary layer. This exchange of balance leads to the identification of distinct
physical layers, unambiguously defined by the predominant mean dynamics active in
each layer. Scaling domains congruent with the physical layers are obtained from a
multi-scale analysis of the mean momentum equation. Scaling behaviours predicted
by the present theory are evaluated using direct measurements of all of the terms in
the mean momentum balance for the case of a sink-flow pressure gradient generated
in a wind tunnel with a long development length. Measurements also captured the
evolution of the turbulent boundary layers from a non-equilibrium state near the wind
tunnel entrance towards an equilibrium state further downstream. Salient features of
the present multi-scale theory were reproduced in all the experimental data. Under
equilibrium conditions, a universal function was found to describe the decay of the
Reynolds stress profile in the outer region of the boundary layer. Non-equilibrium
effects appeared to be manifest primarily in the outer region, whereas differences in
the inner region were attributed solely to Reynolds number effects.

1. Introduction
Several theoretical approaches for deriving scaling relations in wall-bounded

turbulent flows have been pursued in the literature, including those of, among others,
Yaglom (1979), Long & Chen (1981), Panton (1990), Durbin & Belcher (1992),
Barenblatt, Chorin & Prostokishin (1997), Sreenivasan & Sahay (1997), George &
Castillo (1997), Wosnik, Castillo & George (2000) and Perry, Marusic & Jones (2002).
Until recently (Fife et al. 2005 b; Wei et al. 2005a), none of the previous theories
utilized a straightforward comparison of the relative magnitude of the forces in the
unintegrated mean momentum balance as a function of distance from the wall. By
doing so, Wei et al. (2005a) presented a new four-layer model for fully developed two-
dimensional turbulent channel flow (henceforth referred to simply as channel flow),
based on an exchange of balance between the various terms in the mean momentum
balance, which represent forces due to viscosity, turbulence and imposed pressure
gradient. Observations from available experimental and numerical data showed that
usually only two of the three forces are dominant in any given region of the boundary
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layer. This led to the identification of distinct physical layers, defined according to
the predominant mean dynamics active in that region. In addition to their empirical
observations, Wei et al. (2005a) also provided new insight into wall-flow structure
based on a multi-scale mathematical analysis of the mean momentum balance.
From this, Fife et al. (2005a , b) developed a systematic ‘scaling patch’ approach for
determining the local scaling properties of mean profiles, which differs in important
ways from approaches based on classical overlap arguments (see e.g. Millikan 1939).

Because the multi-scale theory of Fife et al. (2005a , b) and Wei et al. (2005a)
is derived directly from the equations governing the mean dynamics of the flow
(with reasonable assumptions designed to fill the gaps created by the averaging
process), it has the potential to provide a consistent framework for investigating
scaling behaviours in both canonical and non-canonical wall-bounded flows. The
present study represents the first step towards accessing this potential by examining
whether the multi-scale approach extends in a straightforward manner to moderately
favourable pressure gradient (FPG) turbulent boundary layers (TBLs). Here,
‘moderately’ implies that the flow does not approach the relaminarization state.
The FPG TBL was chosen because it is perhaps one of the least complicated (both
experimentally and numerically) non-canonical wall-bounded flows to study. Other
non-canonical wall-bounded flows, such as adverse pressure gradient or separating
TBLs, have a tendency to exhibit three-dimensional effects (Clauser 1954; Piquet
2001). A prototypical example of an FPG TBL is the flow through a wedge driven
by a potential sink of momentum located at the vertex of the wedge. The potential
sink causes the flow to accelerate through the wedge, thereby producing an FPG
in the streamwise direction. The flow in the immediate vicinity of the lower – and
upper – plates is typically referred to as a sink-flow TBL. The interesting feature
of the sink-flow TBL relates to its unique property of attaining precise equilibrium
(described further in § 1.1) sufficiently near the sink singularity (Coles 1957; Rotta
1962). The similarity relations valid under equilibrium conditions make the present
theoretical analysis simpler and more complete. Importantly though, the bulk of the
theory presented herein does not necessarily require the flow to be in equilibrium, nor
does the theory depend on the particular form of the applied FPG, and therefore it
is not limited exclusively to sink-flow TBLs.

There are three main aims of the present study. One is to examine similarities
and differences between the FPG TBL and the channel flow with regard to the
mathematical formulation of the multi-scale analysis. Because of the formal analogies
in the two cases, very similar methods can be used and conclusions reached. Secondly,
experimental data by the authors are used to observe the exchange of balance
between terms in the mean momentum equation and subsequent scaling properties
of the mean profiles. Finally, the concept of equilibrium is explored by looking at
the response of the terms in the mean momentum balance, as the TBL progresses
towards an equilibrium state. The paper is outlined as follows: First, a brief review
of equilibrium boundary layers is given in § 1.1. The properties of sink flow are
described in § 1.2. The experimental facility and techniques are specified in § 2. The
mathematical formulation of the present theory is developed in § 3, an important
aspect of which is modelling the mean advection inside the boundary layer as a
natural extension of the potential flow advection at the edge of the boundary layer.
Section 4 describes the physical layer structure and scaling patch analysis as governed
by the particular force balances operating at different locations in the flow domain.
Experimental results are then presented in § 5, demonstrating both non-equilibrium
and Reynolds number effects.
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1.1. Equilibrium boundary layers

The equilibrium layer was first identified as an important class of TBLs in the 1950s
and 1960s (Clauser 1954, 1956; Townsend 1956; Coles 1957; Townsend 1961; Rotta
1962; Bradshaw 1967). This section describes equilibrium layers from the context of
self-preserving flow, analogous to the laminar boundary layers studied by Falkner &
Skan (1931) and provides a brief background of the various criteria in the literature
used to identify equilibrium layers. In a self-preserving flow, the governing equations
may be recast as non-dimensional ordinary differential equations through the proper
choice of length (�̃) and velocity (ũ) scales. Townsend (1956) and Rotta (1962) outline
this procedure for the mean flow in a two-dimensional TBL. This procedure assumes
similarity of the velocity defect and Reynolds shear stress profiles, using a single
characteristic velocity scale, of the form

Uo − U = ũ f (η), (1.1)

〈uv〉 = ũ2 g(η), (1.2)

where η = y/�̃ represents the non-dimensional wall-normal coordinate; U and Uo

represent the mean velocity inside the boundary layer and free stream velocity,
respectively, and �̃ and ũ are functions of the streamwise coordinate x only.
Substituting these relations into the mean momentum balance and combining with
the continuity equation to eliminate the vertical velocity, one obtains
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dũ

dx

]
f +

[
�̃

ũ
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]
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Details of this operation may be found in Lyons (2007). In order for (1.3) to be an
ordinary differential equation with independent variable η, each coefficient in square
brackets must be constant (i.e. independent of x). On the basis of this, it follows
(Townsend 1956, 1961; Rotta 1962) that the requirements for self-preserving flow,
assuming a single characteristic velocity scale, are

d�̃/dx = constant, (1.4)

ũ/Uo = constant, (1.5)

(�̃/ũ)(dũ/dx) = constant. (1.6)

Relation (1.4) requires that the characteristic length scale vary linearly with
downstream distance x. A channel with the upper and lower walls diverging or
converging at a constant angle is one means of obtaining this criterion. The sink flow,
described in more detail in § 1.2, represents the latter case. However, other geometries
may also be used (see e.g. Skare & Krogstad 1994).

Combining (1.5) and (1.6), along with the inviscid flow relation ρ Uo(dUo/dx) =
− dp/dx, one obtains the criterion

δ

τw

dp

dx
= constant, (1.7)

where the local boundary layer thickness and friction velocity have been used, for
example, as the characteristic length and velocity scales, i.e. �̃ ≡ δ and ũ ≡ uτ , where
uτ =

√
τw/ρ with ρ and τw denoting the fluid density and wall shear stress, respectively.

Note that (1.7) is identical to the criterion for self-preserving laminar boundary layers
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of the type studied by Falkner & Skan (1931). Furthermore, Clauser (1954) stated
that a boundary layer will have a constant history and, thus, be classified as an
‘equilibrium’ flow if (1.7) is satisfied, except that Clauser (1954) utilized �̃ ≡ δ′, where
δ′ denotes an effective boundary layer thickness that was never explicitly defined.

In contrast to (1.1), Coles (1957) writes the general form of the velocity defect law
as Uo − U = uτ F (π, η), where π represents a measure of the relative magnitude of the
wake and wall components of the flow. The criterion that Coles (1957) uses to define
an equilibrium boundary is that π remain independent of x, resulting in a velocity
defect independent of x outside of the sub-layer. Coles (1957) concludes, based in
part on experimental data and the analogy with laminar flow, that this criterion is
satisfied for equilibrium TBLs when

D ≡ uτ

Uo

(∂Uo/∂x)

(∂uτ/∂x)
= constant. (1.8)

The criterion D = constant can be derived directly from the self-preserving form of
the mean momentum equation by again combining (1.5) and (1.6) and using ũ ≡ uτ .

Bradshaw (1967) indicates that a necessary condition for similarity of the velocity
defect profile is that the contribution of the pressure gradient to the growth of the
momentum deficit remain constant, resulting in the condition that

β ≡ δ1

τw

dp

dx
= constant, (1.9)

where δ1 denotes the displacement thickness. This condition is consistent with (1.7),
as explained in the following. Assuming similarity of the velocity defect profile (1.1)
with ũ ≡ uτ , the displacement thickness may be written as

δ1 =
uτ δ

Uo

∫ 1

0

f dη. (1.10)

Substituting (1.10) into (1.7) and using the criterion (1.5) leads directly to the result
that β = constant for an equilibrium layer.

Castillo & George (2001) define an equilibrium boundary layer as one in which the
pressure gradient parameter Λ remains constant, i.e.

Λ ≡ δ

ρU 2
o (dδ/dx)

dp

dx
= constant. (1.11)

This criterion also follows directly from the self-preserving form of the mean
momentum equation by combining (1.4)–(1.6), along with the inviscid relation
ρ Uo(dUo/dx) = −dp/dx, and taking �̃ ≡ δ.

Contrary to the studies described above, Townsend (1956, 1961) defines an
equilibrium layer as a region (relatively small compared to the thickness of the
boundary layer) wherein production of turbulent kinetic energy approximately
balances dissipation and advection terms remain negligible. In this sense, ‘equilibrium’
layer refers to energy equilibrium. For a boundary layer having a region adjacent to
the wall with nearly constant shear stress, Townsend (1961) shows that the criterion
for energy equilibrium in that region leads to the well-known log law behaviour
of the inner normalized mean velocity profile in the region. As such, the flow may
be considered self-preserving in the small region of the boundary layer, satisfying
energy equilibrium, regardless of the self-preserving nature of the outer flow. In the
present study, however, the term ‘equilibrium layer’ refers to the situation in which
the entire boundary layer (excluding the viscous sub-layer) achieves an approximate
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Figure 1. Flow through a wedge driven by a potential sink of momentum located at x = L.
In the experiments, a fan located at x = Lt simulates the effect of a virtual momentum sink.

self-preserving state, such that the flow satisfies two or more of the criteria (1.4)–
(1.6) necessary to obtain the self-preserving form of the mean momentum balance,
assuming similarity of the velocity defect and Reynolds stress profiles. This definition
of equilibrium is preferred here because, although more restrictive compared to
Townsend’s view, it represents the condition wherein the entire boundary layer loses
memory of its upstream history.

1.2. Sink flow

The mathematical analysis presented herein is motivated and evaluated using
experimental data by the authors from both equilibrium and non-equilibrium sink-
flow TBLs, in addition to available data from direct numerical simulations (DNS)
of equilibrium sink-flow TBLs (Spalart 1986). Here, ‘non-equilibrium’ refers to the
state of the flow in the entrance region of the experimental facility; as the flow
progresses downstream, it eventually loses all memory of its upstream history, thus
attaining equilibrium. Figure 1 illustrates the present experimental configuration used
to generate a sink flow, i.e. flow through a two-dimensional wedge. (Further details of
the experiments are provided in § 2.) Streamlines in the potential core of the channel
(outside of the boundary layers that develop along the channel walls) are directed
radially towards a virtual point sink of momentum located at x = L, corresponding
to the vertex of the two channel walls. The strength of the virtual momentum sink
is characterized by the entrance velocity Ue and height of the channel opening at
x = 0. The angle γ is small enough to ensure that typical boundary layer assumptions
remain valid. The sink-flow TBL was chosen for comparison with the present theory
for several reasons: (i) the flow geometry is relatively simple; (ii) data from DNS
(Spalart 1986) and laboratory experiments (Jones, Marusic & Perry 2001) already
exist over a substantial Reynolds number range and (iii) both equilibrium and non-
equilibrium conditions are achievable with a single flow configuration. Experimental
studies (Jones et al. 2001) show that the sink-flow TBL attains equilibrium at a
streamwise distance x/L ≈ 0.6 from the entrance of the wedge.

From the geometry and mass conservation, it is clear that

Uo = Ue

(
1 − x

L

)−1

, (1.12)

where U0 denotes the flow outside of the boundary layer (in the potential core of the
channel). Under these conditions, the boundary layer developing along the floor is
subjected to a moderately FPG, Uo (dUo/dx) > 0, of the form

Uo

dUo

dx
=

U 2
e

L (1 − x/L)3
, (1.13)

where Euler’s equation (for inviscid flow) has been used to write the pressure
gradient in terms of the mean advection outside the boundary layer, i.e.
−ρ−1(dP/dx) = Uo(dUo/dx). A non-dimensional pressure gradient or acceleration
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17.1 m

0.5 m
γ = 1.3°

Figure 2. Schematic of wind tunnel with angled ceiling used to model a sink flow.

parameter K is introduced following convention,

K = − ν

ρ U 3
o

dP

dx
=

ν

U 2
o

dUo

dx
, (1.14)

where ν denotes the kinematic viscosity. For the particular case of a sink flow,

K =
ν

L Ue

, (1.15)

which looks like an inverse Reynolds number. The coefficient of pressure is given by

Cp =
P − Pe

1/2 ρ U 2
e

= 1 − 1

(1 − x/L)2
, (1.16)

where Pe denotes the reference static pressure at the entrance.

2. Experimental techniques
2.1. Wind tunnel facility

An open–return suction wind tunnel, with a long development length, served as the
experimental facility. The test section of the wind tunnel measures 17.1 m long,
0.61 m wide and 0.5 m high. Flow enters the facility through a straight section
containing a series of screens and honeycombs. In order to simulate sink flow, a
false ceiling (made of Styrofoam panels) was prefabricated and inserted into the test
section at an angle γ = 1.3◦, as shown in figure 2. Lyons (2007) provides further
details regarding the design of the ceiling and optimization of the slope. A trip wire
of diameter d was located at the entrance of the test section (x = 0), such that Ued/ν

matched that prescribed by Erm & Joubert (1991). The long length of the test section
allowed greater boundary layer growth, which resulted in better spatial resolution of
the measurement probes compared to that offered by a shorter test section.

2.2. Hot-wire probes

Instantaneous horizontal (u) and vertical (v) velocities were measured using constant
temperature hot-wire anemometers (AA Labs 1003), in conjunction with both normal-
wire and x-array probes (manufactured in-house). The hot-wire probes consisted of a
5-μm tungsten filament, copper-plated at the ends, leaving an unplated (active) region
in the centre of length �w = 1 mm. The two tungsten filaments comprising the x-array
were slanted by ± 45◦ and separated by dw = 1 mm in the spanwise direction.

Figure 3 shows a schematic of the hot-wire configuration used in the present study.
Two normal-wire probes and one x-array probe were attached to a single vertical rod
and traversed simultaneously through the boundary layer, using a motorized linear
slide (Velmex) positioned underneath the wind tunnel floor. The two normal-wire
probes were staggered ±152 mm in the streamwise direction, relative to the centrally
located x-array, and offset by 100 mm in the spanwise direction (in order to avoid flow
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Figure 3. Hot-wire configuration used to simultaneously measure all of the terms in the
mean momentum balance (top view).

disturbances due to the staggered streamwise arrangement). All three probes were
aligned in the vertical direction with the aid of a telescope (resolution of 0.05 mm) by
first fixing the position of the x-array probe and then manually adjusting two separate
miniature traverses attached to the mounting stings of the two normal-wire probes.
The staggered arrangement allowed direct measurement of all of the terms in the mean
momentum balance; further details of the calculations are given by Lyons (2007). To
verify that the flow is two-dimensional, two separate normal-wire probes were spaced
approximately 250 mm apart in the spanwise direction and traversed simultaneously
across the boundary layer at eight streamwise locations between 0.66 � x/L � 0.2.
The difference in the mean profiles was less than 1 %, and no distinct trends were
observed as a function of x/L, indicating that the present flow could be considered
two-dimensional. All hot-wire probes were calibrated in the free stream of the wind
tunnel before and after each profile, using the methodology described in detail by
Metzger & Klewicki (2003). The free stream velocity during calibration was measured
using a Pitot-static tube (collocated with the hot-wire probes, which were adjusted
to the same x position for calibration) and a high-accuracy differential pressure
transducer (MKS Baratron, 1.0 mm Hg full scale).

2.3. Experimental parameters

Table 1 summarizes the relevant parameters in the present wind tunnel experiments,
in addition to those from the DNS study of Spalart (1986). Here, the superscript +
indicates inner normalization using ν and uτ . Mean and turbulence data were obtained
for entrance velocities Ue = 1.6 and Ue = 2.4 m s−1, which produced moderately FPGs
corresponding to K = 5.6 × 10−7 and 3.7 × 10−7, respectively. The Kármán numbers
(defined as Reτ = δuτ/ν, where δ denotes the boundary layer thickness) of the
combined DNS and present experimental data spanned almost an order of magnitude
(i.e. 250 � Reτ � 1646). Note δ+ ≡ Reτ . At each Ue setting, velocity profiles were
obtained at x/L = 0.29, 0.39, 0.54, 0.66. Each profile consisted of approximately
50 wall-normal locations, spaced logarithmically from the wall. At each wall-normal
location, data were sampled (using IOTech ADC488/8SA analog to digital converter)
at 5 kHz over a period equal to about 10 000 times the local integral time scale, as
recommended by Klewicki et al. (1990) in order to achieve well-converged variance
and covariance statistics. The local friction velocity uτ (≡

√
τw/ρ, where τw represents
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Available DNS data (equilibrium only)

Rθ Rτ K (×107) Ue (m s−1) �+
w , d+

w line

380 250 27.5 NA ∼6 · · ·
415 285 25 NA ∼6 −−
690 440 15 NA ∼6 —

Present experimental data

Rθ Rτ K (×107) Ue (m s−1) �+
w , d+

w x/L symbol

884 528 5.6 1.6 5.8 0.29
1210 724 5.6 1.6 7.4 0.39
1587 925 5.6 1.6 9.4 0.54
1618 1170 5.6 1.6 11.5 0.66 �
1387 790 3.7 2.4 8 0.29 ∗
1700 1018 3.7 2.4 10.3 0.39 ♦
2033 1307 3.7 2.4 13.3 0.54 �
2443 1646 3.7 2.4 16.1 0.66 ◦

Table 1. Present experimental parameters plus those from the DNS study of Spalart (1986).

2 4 6 8
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0.15

0.20

0.25

0.30

0.35

Uo

u τ

Figure 4. Friction velocity versus free stream velocity for all of the wind tunnel data.

the wall shear stress) associated with each profile was determined using the Clauser
chart method (Clauser 1954). This method forces the logarithmic region of the inner
normalized mean profile to fall along a line of constant skin friction coefficient Cf .
All of the mean profiles in the present study exhibited extended logarithmic regions
and hence were well suited for use with the Clauser method. Over a similar K

range as investigated in the present study, Jones et al. (2001) found that the Clauser
method (using log law constants κ = 0.41 and A = 5.0) overestimated uτ by less than
approximately 1.5 %, as compared to that expected from the integral momentum
equation applied in the equilibrium region. Figure 4 shows a plot of uτ as a function
of Uo for all of the present wind tunnel data.

2.4. Potential flow measurements

Verification of the bulk flow was performed by comparing measurements of Uo and
Cp with those expected from the inviscid theory for a point sink of momentum, as
given by (1.12) and (1.16), respectively. The experimental values of Cp as a function
of x were obtained using wall pressure taps located along the centreline of the wind
tunnel floor. The free stream and entrance velocities were measured using Pitot-static
tubes located along the centre of the test section. In both cases, differential pressures
were measured with the same type of pressure transducer as used in the hot-wire
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Figure 5. Bulk flow properties versus x/L: (a) pressure coefficient; (b) normalized free stream
velocity. The solid lines represent the theoretical behaviour of inviscid sink flow as given
by (1.12) and (1.16). The vertical dashed lines represent the expected onset of equilibrium
conditions.
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Figure 6. Streamwise evolution of (a) inner normalized free stream velocity and (b) β defined
in (1.9). Open symbols from Jones et al. (2001): K(× 107) = 2.7 ◦, 3.6 �, 5.4 �. Solid symbols
from present data: K(× 107) = 3.7 �, 5.6 �. DNS data from Spalart (1986): K(× 107) = 15
(solid line), 25 (dashed line).

calibrations. The results are shown in figure 5. The value of L = 20.3 m yielded the
best curve fit of the theory to the combined Uo and Cp data. The vertical dashed
lines denote the approximate onset of equilibrium conditions, according to the study
of Jones et al. (2001). The present experimental data, for both of the acceleration
parameters tested, follow the theoretical curves very well for x/L � 0.66, ensuring
that both equilibrium and non-equilibrium behaviours are captured in the present
facility. Increasing deviation from the inviscid theory is observed for x/L > 0.7 and
is attributed to facility end effects. Therefore, only data from x/L � 0.66 are utilized
in the present study.

2.5. Streamwise evolution of bulk flow

The inner normalized free stream velocity and the parameter β , as defined in (1.9),
are shown in figure 6 as functions of streamwise position, compared with the data
of Jones et al. (2001) for similar acceleration parameters. The data of Jones et al.
(2001) clearly reveal that U+

o approaches a constant value for x/L > 0.55. This is
consistent with the behaviour of an equilibrium boundary layer as discussed in § 1.1.
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For x/L > 0.5, the present data agree well with that of Jones et al. (2001), while for
x/L < 0.5, the present U+

o values fall below that of Jones et al. (2001). Interestingly
with regard to the latter observation, when the angled ceiling was not completely
sealed to the sidewalls of the wind tunnel, the measured U+

o values near the facility
entrance (x/L < 0.5) were shifted upwards and matched more closely with those of
Jones et al. (2001). Note Clauser (1954) describes how an improperly sealed ceiling
may induce flow leakage out of the facility, thereby leading to an artificial thinning of
the boundary layer (developing along the floor of the facility) in an adverse pressure
gradient. This effect has been shown to cause an increase in the observed skin friction
while approaching separation, contrary to the behaviour predicted by the integral
momentum equation. By analogy, for the case of an FPG, leaks in the ceiling may
induce an artificial thickening of the boundary layer, which would tend to decrease
the measured friction velocity and, hence, increase U+

o .
In (1.9), the condition that β = constant (i.e. independent of x) in the equilibrium

regime was shown to follow directly from the assumption of a self-preserving form
of the mean momentum balance. Figure 6(b) compares the β parameter from the
present experiments to that of Jones et al. (2001) and Spalart (1986). Note the DNS
data of Spalart (1986) are shown as horizontal lines because these data correspond
to equilibrium flow only and, thus, are independent of x/L. The trend of the present
data agrees with that in Jones et al. (2001), i.e. β decreases as x/L → 1, although the
slope of the present data is slightly steeper. The data of Jones et al. (2001) suggest
that the equilibrium value of β (for x/L � 0.6) is − 0.51, independent of Reynolds
number at least over the range 1000 < Reτ < 2000; however, the equilibrium DNS
data of Spalart (1986) indicate β = − 0.6 at Reτ � 440. The present equilibrium data,
at similar Reτ compared to Jones et al. (2001), agree more closely with the β value
from the DNS. According to the analysis in § 1.1, one expects that for a given flow
field (specified by dP/dx), under equilibrium conditions (i.e. when the self-preserving
form of the mean momentum balance is valid) β should be independent of both x

and Reτ . The slight discrepancy in this regard between the present experimental study
and that of Jones et al. (2001) remains to be understood.

3. Mathematical formulation of theory
The mean momentum equation for a two-dimensional steady (in the mean) TBL

(Pope 2000, p. 113) is

ν
∂2U

∂y2︸ ︷︷ ︸
Fv

− ∂〈uv〉
∂y︸ ︷︷ ︸
Ft

−
[
U

∂U

∂x
+ V

∂U

∂y

]
︸ ︷︷ ︸

Fa

+ U0

∂U0

∂x︸ ︷︷ ︸
Fp

= 0, (3.1)

where U and V are the mean velocity components in the streamwise (x) and vertical
(y) directions, respectively, and 〈uv〉 is the average Reynolds shear stress. From left
to right, the terms in (3.1) represent the viscous stress gradient or viscous diffusion
(Fv), turbulent or Reynolds shear stress gradient (Ft ), total mean advection (Fa) and
pressure gradient (Fp). In canonical turbulent wall-bounded flows, such as the fully
developed channel and the zero pressure gradient (ZPG) boundary layer, only three
terms exist in the mean momentum equation. Specifically, for fully developed channel
flow, the balance occurs between Fv , Ft and Fp , whereas in the ZPG case, the balance
occurs between Fv , Ft and Fa . Understanding how the combination of Fa and Fp

(in balance with Fv and Ft ) affects the mean dynamics and scaling properties of the
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Figure 7. Comparison of the magnitudes of the terms in the inner normalized mean
momentum balance from DNS data: (a) ZPG at Reτ = 300 and (b) FPG at Reτ = 285,
K = 25 × 10−7.

TBL lies at the crux of the present study. Note, the term ∂/∂x[〈u2〉 − 〈v2〉], which
represents the gradient of the Reynolds normal stresses, only becomes non-negligible
in flows approaching separation (Castillo & Wang 2004) and is therefore neglected in
the present study.

The magnitudes of the terms in the inner normalized mean momentum balance are
compared in figure 7, using DNS data from both a ZPG TBL (Spalart 1988) and an
equilibrium FPG TBL (Spalart 1986) at similar Reτ . Available DNS data for other
values of Reτ and K resemble the ones shown in figure 7. The mean momentum
balances of the ZPG and FPG TBLs exhibit both similarities and differences, which
cannot be attributed to Reynolds number effects. Within the inner region of the
boundary layer (y+ < 30), the viscous stress gradient (Fv) and Reynolds stress gradient
(Ft ) appear to be in approximate balance in both TBLs. The absolute magnitude of
the peaks in Fv and Ft , however, are larger in the ZPG case. Furthermore, in the
FPG case, the zero crossing of Ft (which corresponds to the peak in the Reynolds
stress profile) occurs at a lower y+, compared to the ZPG TBL. In the outer region
(y/δ > 0.15), the Reynolds stress gradient appears to balance the mean advection in
the ZPG case, while in the FPG case, the mean advection appears to balance the
pressure gradient. In both TBLs, Fv appears to approach zero at rates similar to
y+→ δ+, whereas in the FPG case, Ft approaches zero much more gradually than in
the ZPG case. Note also that the mean advection has opposite signs in the two cases.

3.1. Modelling mean advection

Figure 7(b) shows that the mean advection (Fa) approximately balances the pressure
gradient (Fp) in the outer region of the FPG TBL. At the edge of the boundary layer,
the mean advection within the boundary layer must, of course, match that of the free
stream (i.e. Fa = Fp at y = δ). In addition, Fa must vanish at the wall (y+ = 0), since
U = V = 0 there, as verified in figure 7(b). These observations suggest that the mean
advection inside the TBL may be represented as a fraction, α(x, y), of the advection
of the potential flow outside the TBL. The proportionality parameter α necessarily
depends on both x and y. This leads to the following model of mean advection,[

U
∂U

∂x
+ V

∂U

∂y

]
= α(x, y) U0

∂U0

∂x
, (3.2)
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Figure 8. Plots of α as functions of distance from the wall, using DNS data: (a) outer
normalization; (b) inner normalization. The horizontal grey line represents α, which remains
nearly constant for the three K cases.

where 0 � α(x, y) � 1 to satisfy the boundary conditions. In this view, the potential
flow pressure gradient just outside the boundary layer induces advection inside the
boundary layer, while the viscous force, due to the presence of the wall, exerts a
retarding influence on advection. Therefore, α is predicted to increase monotonically
from 0 to 1, as y increases from the wall to the outer edge of the TBL.

Figure 8 illustrates the distinctive properties of α as a function of y+ and y/δ from
the equilibrium FPG data of Spalart (1986). The DNS data are consistent with the
above-noted expectations: (i) α = 0 at y = 0; (ii) α = 1 at y = δ(x); (iii) α increases
monotonically with y+. Note α values for y+ < 10 at the lowest K shown are not
accurate because of the propagation of uncertainties in the finite difference scheme
used to calculate spatial gradients from the DNS data. Also shown in figure 8 is α,
defined as the average of α over the boundary layer thickness:

ᾱ = δ−1

∫ δ

0

α(x, s) ds. (3.3)

Within the Reτ range of the available DNS, only a very weak dependence of α on
Reτ exists, with α = 0.812 at Reτ = 440. Figure 9 displays α as a function of Reτ

from the combined DNS and present experimental data, under equilibrium conditions
only (i.e. x/L > 0.6 for the experiments). Although it appears that α increases nearly
linearly with Reτ , at least over the present Reτ range, it is intuitive, however, that
α →1 in an asymptotic fashion, as Reτ →∞. This has implications with respect to the
expected change in the α profiles (when plotted versus y/δ) as Reτ increases and will
be revisited in § 5.2.

The proportionality parameter α(x, y) is one of the two principal links that establish
the connection between the theoretical study of mean profiles in the FPG TBL with
those of the ZPG TBL (or fully developed channel flow). The other principal link will
be introduced in § 4.4. At this point, an explicit functional form of α(x, y) is not known
theoretically. However, three reasons for why this bears little consequence in the main
contribution of the present study are given. First of all, introduction of α allows
a reduction in the total number of terms in the force balance, which is significant
to making connections between the FPG TBL and canonical wall-bounded flows.
Secondly, over the Reτ range available, α appears to be independent of Reynolds
number for y/δ > 0.15, at least, within the uncertainty of the data. (Supporting
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Figure 9. Average α versus Reτ for the FPG equilibrium case only. Data are combined
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experimental data are shown in § 5.2, and important ramifications are discussed in
§ 5.3.) Thirdly, the known properties of α(x, y), as stated in the previous paragraph,
will suffice to provide the order of magnitude results with which the present theory is
concerned.

3.2. Introduction of small parameter ε

Combining (3.1) and (3.2) yields

ν
∂2U

∂y2
− ∂〈uv〉

∂y
+ [1 − α(x, y)] U0

∂U0

∂x
= 0. (3.4)

The inner normalized form of (3.4) can be written as

∂2U+

∂y+2
− ∂〈uv〉+

∂y+
+ ε2(x+) b(x+, y+, ε) = 0, (3.5)

where

b(x+, y+, ε) =
1 − α(x+, y+, ε)

1 − α(x+, ε)
, (3.6)

and ε is defined such that

ε2(x+) = [1 − α(x+, ε)]K(x+) U+3
0 (x+). (3.7)

Note for the specific case of a sink-flow TBL, K remains independent of x+. The
relation in (3.7) defines ε2(x+) implicitly (explicitly if α is independent of ε). It
is assumed that ε is small. For example in the sink-flow study of Spalart (1986),
1.1 × 10−2 < ε2 < 2 × 10−2 over a Reynolds number range of 250 � Reτ � 440.
The boundary conditions associated with (3.5) are U+ = 〈uv〉+ = 0 and ∂U+/∂y+ =1
at the wall (y+ = 0) and ∂U+/∂y+ = 〈uv〉+ = 0 at the upper edge of the boundary
layer (y+ = δ+). By integrating (3.5) with respect to y+ from 0 to δ+, one obtains a
prediction for the inner normalized boundary layer thickness in terms of ε:

δ+(x+) = ε−2(x+). (3.8)

Thus, the smallness of ε2 may be related directly to the largeness of Reτ (or, equi-
valently, δ+). Note for equilibrium sink-flow TBLs, there is a one-to-one correspon-
dence of Reτ and K with Reτ ∝ K−1 (Jones et al. 2001).
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3.3. The equilibrium state and the analogy with channel flow

A summary of the main features of the analogy between channel flow and the FPG
TBL is given here. First of all, the basic inner normalized differential equation (3.5)
has the same appearance as the one for channel flow, except in the channel,
b(x+, y+, ε) = 1. In both flows, the extension of the domain is between 0 � y+ � δ+,
where δ+ is related to ε in both flows by (3.8). Furthermore, the boundary conditions
are identical at y+ = 0, U+ = 0 and ∂U+/∂y+ = 1, while at y+ = δ+, ∂U+/∂y+ =
〈uv〉+ = 0 and U+(x+, δ+) = U+

o (x+). The formal similarity between the two problems
enables techniques and concepts from the study of channel flow (Fife et al. 2005a , b;
Wei et al. 2005a) to be used in the present context of the FPG TBLs as well. In
particular, a multi-scale analysis of the inner and outer regions, based on the existence
of the small parameter ε(x+) in the governing equation, is pursued in §§ 4.1 and 4.2 in a
manner very similar to channel flow. In addition, a continuum of local natural scales,
called scaling patches, is found in § 4.4, using similar methods as in channel flow.

Another similarity between channel flow and the FPG TBL pertains to the
behaviour observed in the equilibrium state. One criterion for equilibrium is that U+

o

remain independent of x+ (see (1.5)). Therefore, ∂U+
0 /∂x+→ 0 as the flow approaches

equilibrium, analogous to the situation in channel flow. This results in an interesting
ramification with regard to entrainment (in the mean sense) as the flow approaches
equilibrium in the FPG boundary layer, as seen from (3.2), which may be rewritten
in inner normalized form as

α(x+, y+) =

[
U+

0

∂U+
0

∂x+

]−1 [(
U+ ∂U+

∂x+

)
+

(
V + ∂U+

∂y+

)]
. (3.9)

As the flow approaches equilibrium, both ∂U+/∂x+→ 0 and V +→ 0 at the same rate
as ∂U+

0 /∂x+→ 0 in order to ensure that α remains bound for all x+ and y+. This
must hold, since U+ �= 0 and ∂U+/∂y+ �= 0 throughout the boundary layer (except
at the boundaries). The criterion of boundedness for α is also enough to establish
the independence of α with respect to x+ in the equilibrium regime. The fact that
V +(x+, y+) = 0 implies that the mean dynamics suppress entrainment (on average)
of potential core momentum into the boundary layer when the FPG TBL attains an
equilibrium state, which is directly analogous to the situation in channel and pipe
flow. On the basis of this observation and the fact that α approaches unity in the
outer region (figure 8), one might hypothesize that non-equilibrium effects (in the
mean profiles) would primarily be manifest in the outer region of the boundary layer,
because this is the region immediately affected by entrainment. This notion will be
revisited later in § 5.

In channel flow, ε [≡ (δ+)−1/2] represents a parameter independent of x+. In fact,
all functions remain independent of x+ in channel flow. Furthermore, δ+ is a known
quantity (δ from the geometry and uτ from the integral momentum equation based
on knowledge of the imposed pressure gradient driving the flow), while the value of
U+

o is not known explicitly. In the FPG TBL, although neither U+
o nor δ+ is known

explicitly, there will be some function F such that

U+
o (x+) = F (ε2, x+), (3.10)

where the x+-dependence has been retained to account for both equilibrium and non-
equilibrium conditions. Note that the dependence of U+

o on x+, besides the inherent
x+-dependence of the parameter ε, comes about only through the dependence of b

with respect to x+, as seen in (3.6). This x+-dependence of U+
o is now examined.
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Figure 10. Plot of U+
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sink flow data and (b) K for equilibrium sink flow only. Superpipe: (McKeon et al.
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(Spalart 1986), (Jones et al. 2001), + (Hafez 1991), ∗ (Jones & Launder 1972), • present.
The dashed line in (a) represents a curve fit to the Superpipe data only. The dashed line in (b)
represents a curve fit to: •.

In channel flow where β =1, Wei et al. (2005a) show that F grows like C| ln ε| +D.
In the FPG TBL, it may safely be assumed that F is a decreasing function of ε2, i.e.
U+

o increases with δ+, and that F→ ∞ as ε→ 0. Figure 10(a) compares F for several
different flows: Superpipe (McKeon et al. 2004); ZPG TBL, experimental (Klewicki
et al. 1990; DeGraaff & Eaton 2000) and DNS (Spalart 1988); equilibrium FPG
TBL, experimental (Jones et al. 2001) and DNS (Spalart 1986). At relatively low ε2

(or equivalently high δ+) in the range ε2 < 3×10−3, a noticeable offset exists between
the Superpipe/ZPG data and the equilibrium FPG results; however, the logarithmic
trend appears to be the same.

Now recall (3.7) which, along with (3.10), gives ε2(x+) = (1 − α)K [F (ε2, x+)]3. This
can be solved to give ε2 = ε2(K, x+). Putting this dependence back into (3.10), one
then obtains a relation between U+

0 , on the one hand, and K and x+, on the other.
Namely for some function S,

U+
0 (x+) = S(K, x+). (3.11)

Figure 10(b) shows S, using previous experimental measurements (Jones & Launder
1972; Hafez 1991; Jones et al. 2001) and DNS data (Spalart 1986) from the sink-flow
TBL in the equilibrium regime, wherein any x+-dependence of S has vanished. The
theoretical prediction of Perry, Marusic & Li (1994) based on the attached eddy
hypothesis is also shown. The data reveal both F and S to be monotone functions,
increasing as both ε2 and K decrease. It then follows from (3.7) and (3.11) that
ε2(x+) = (1 − ᾱ)K [S(K, x+)]3, which shows that the smallness of ε2 is related to the
smallness of K . Inserting (3.8) into this expression and considering only equilibrium
conditions yields a prediction for the inner normalized boundary layer thickness:

δ+ = {(1 − ᾱ)K [S(K)]3}−1. (3.12)

Over the entire Reτ and K range investigated here, including the present experiments
and DNS study of Spalart (1986), a difference of 3 % was observed (on average)
between the measured δ+ and that predicted from (3.12).
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Figure 11. Ratio of the viscous diffusion term to the Reynolds stress gradient from DNS
data: (a) channel (Moser et al. 1999) and (b) equilibrium FPG TBL (Spalart 1986). Vertical
grey lines represent approximate layer boundaries for the intermediate Reτ case.

4. Layers and scaling domains
The basic differential equation (3.5) with corresponding boundary conditions is

formally identical to the one that describes channel flow when b = 1. Despite the
presence of the factor b in (3.5), most of the same physical layer analysis can be
performed, as in the previous work of Wei et al. (2005a), to reveal the physical layer
structure of the FPG TBL in terms of the small parameter ε(x+). To highlight this,
figure 11 shows the ratio of the viscous diffusion term to the Reynolds stress gradient
(Fv/Ft ), using DNS data for channel flow (Moser, Kim & Mansour 1999) compared
to that of the equilibrium FPG TBL (Spalart 1986). Note, Wei et al. (2005a) observed
a marked similarity between the layer structures of channel and the ZPG TBL,
although their mathematical analysis focused exclusively on channel flow. In the two
cases shown in figure 11, a noticeable layer structure exists, with layers labelled I–IV.
Approximate layer boundaries, for the intermediate Reτ cases only, are marked by
vertical grey lines. Reynolds number dependencies of layer boundaries are discussed
later in the section.

Each layer is distinguished by the mean dynamics valid in that region of the flow.
Since there are only three terms in the force balance governing the mean dynamics,
the ratio of two terms is sufficient to describe the behaviour of the system. For
example in layer II, the mean dynamics are dominated by a balance between the
viscous and turbulent stress gradients, since Fv/Ft ≈ −1 there. Although qualitative
features of the layer structure are preserved in the FPG case, several differences are
also revealed. For example the location of layer III in the FPG case does not appear
to be dependent on Reynolds number to the extent observed in the channel flow. In
addition, a noticeable increase in the ratio of Fv/Ft exists in layer IV in the FPG
case. These differences are explored further in the following sections.

4.1. The inner scaling region

For the FPG case, inner scaling is valid near the wall for the same reasons as in
channel flow. If one sets T = − 〈uv〉+, the inner scaled version of (3.5) may be written
as

d2U+

dy+2
+

dT

dy+
+ ε2b(y+, ε) = 0. (4.1)
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In the wall region, the last term in (4.1) is O(ε2) and may be neglected, resulting in
an approximate balance between the viscous and Reynolds stress gradients. Figure 11
shows that for very small y+ (layer I), the viscous stress gradient dominates the
Reynolds stress gradient, so that the mean momentum equation may be integrated
twice to yield the relation U+ ≈ y+ in layer I. Mean velocity profile data for the
sink-flow TBL (Spalart 1986) support this first-order approximation. Including O(ε2),
but still neglecting the Reynolds stress gradient, and integrating leads to the second-

order approximation: U+ ≈ y+ − (ε2 y+2
)/(2−2α). Therefore, in the FPG TBL, mean

velocity data very near the wall are expected to fall slightly below the linear profile.
As y+ increases in layer II, both stress gradients achieve the same order of

magnitude, while the pressure gradient/mean advection combination still remains
O(ε2); thus, the linear region (where U+ ≈ y+) ceases to be valid in layer II. It
should be emphasized, however, that inner scaling does hold in both layers I and II.
Note, in (3.5) and the associated boundary conditions, the variable x+ appears only
as a parameter; i.e. no derivatives with respect to that variable appear explicitly. The
approach here will be to treat x+ as a fixed parameter so that relationships developed
for U+ and 〈uv〉+ are assumed valid at every given x+. For example in layer I, the
x+-dependence of U+ emerges through the dependence of uτ on x+ in such a way
that U+ ≈ y+ at every given x+.

4.2. The outer scaling region

Outer scaling will be valid in the region of flow furthest from the wall, adjacent to
the potential core (i.e. layer IV). The appropriate outer variable here turns out to
be η = ε2 y+ (or, equivalently, η = y/δ). From (3.8), it is clear that the edge of the
boundary layer resides at η = 1. The outer scaled version of (3.5) becomes

ε2 d2U+

dη2
+

dT

dη
+ b(η, ε) = 0, (4.2)

where the dependencies on x+ have been suppressed for simplicity, as noted above.
Neglecting ε2 in (4.2) yields an outer approximation dT ∗/dη = − b(η, ε). Integrating
once yields the decay of the Reynolds stress in the outer region:

T (η) ≈
∫ 1

η

b(s, ε) ds ≡ T ∗(η, ε). (4.3)

Note T ∗(0, ε) = 1 and T ∗(1, ε) = 0. Also, the first two derivatives of T ∗ vanish at η = 1,
and so T ∗ is rather flat there. However, T ∗ is not a good approximation to T in a
neighbourhood of η =0 (near the wall). As η decreases from 1, the true function
T (η) rises to a peak value near T ∗(0, ε) and then drops again near the wall to satisfy
T (0) = 0.

Except for the smooth approach to the upper value T (1) = 0, due to the presence
of α, the T for the FPG case has the same qualitative behaviour as in channel flow
(see Wei et al. 2005a). Figure 12 demonstrates that the prediction in (4.3) compares
quite well with the DNS data of Spalart (1986) near η = 1. Because of the asymptotic
nature of the theory, the agreement is expected to improve as ε →0 (or, equivalently,
Reτ → ∞). Note, the integral in (4.3) is evaluated using the α profile at Reτ = 440
(as shown in figure 8). Over the narrow Reynolds number range investigated in the
DNS study, the trend appears to be that as ε→ 0, T increases to a limiting T ∗. An
important ramification is that low Reynolds number DNS data may be sufficient to
determine the high Reτ behaviour of T in the outer region of the flow near η = 1,
since the outer flow behaviour of T depends entirely on α(η, ε), which appears to
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Figure 12. Inner normalized Reynolds stress versus the outer scaled wall-normal coordinate,
using the sink-flow DNS data of Spalart (1986). The grey line represents the theoretical T ∗ as
given by (4.3).

be relatively independent of Reτ for η > 0.15. Experimental results in § 5.3 further
substantiate this observation.

4.3. The mesolayer

In the mesolayer (associated loosely with layer III in figure 11), it will be shown that
the wall-normal coordinate scales with the geometric mean of the inner and outer
scales. In order to obtain this result, it is useful to work with a modified Reynolds
stress, defined as

T̃ ≡ T − T ∗ − η, (4.4)

where T ∗ denotes the outer layer approximation as given by (4.3). Taking the derivative
with respect to y+, using the facts that dη/dy+ = ε2 and dT ∗/dy+ = − ε2 b(η, ε), gives

dT̃

dy+
=

dT

dy+
+ ε2 b(η, ε) − ε2. (4.5)

Substituting this into (4.1) yields

d2U+

dy+2
+

dT̃

dy+
+ ε2 = 0. (4.6)

In channel flow, the mesolayer occurs at the peak in T (Wei et al. 2005a). In the
present case, however, the mesolayer occurs at the peak in T̃ . The difference in the
location of these peaks is small, as shown from (4.5). Specifically, when dT/dy+ = 0,
dT̃ /dy+ = ε2(b−1), indicating that the peak in T̃ occurs at slightly higher y+ compared
to the peak in T . For example from the DNS data at Reτ = 440, b = 2.75 at the
location of the peak in T . Since b = O(1), dT̃ /dy+ = O(ε2) when dT/dy+ = 0, which
guarantees that the location of the peak in T is close to the peak in T̃ .

As y+ increases across layer II, T̃ rises to a peak, at which point the middle term in
(4.6), dT̃ /dy+, vanishes. As dT̃ /dy+ approaches 0, a place must exist where dT̃ /dy+

equals ε2, i.e. becomes the same order of magnitude as the last term in (4.6). Near
that point, which is in a neighbourhood of the peak in T̃ , all three terms in (4.6)
have the same order of magnitude. It is then appropriate, and possible, to rescale the
variables such that all terms in (4.6) are nominally O(1).
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Similar to the approach used for channel flow (Wei et al. 2005a), such a rescaling
is accomplished by defining

y+ = y+
m + εζ ŷ, U+ = U+

m + εξ Û , T̃ = T̃m + εψT̂ , (4.7)

where Û , T̂ are O(1) functions of ŷ and ε; T̃m, U+
m are the values of T̃ , U+ at y+

m ,
which define the location of the peak in T̃ . Since the theory deals only with orders of
magnitude of the scaling factors (εξ , εζ , εψ ), there is no loss of generality in taking
the coefficients of these powers of ε to be unity. In addition, the linear parts of U+

and T̃ are irrelevant to this scaling exercise because they contribute nothing to the
two derivatives in (4.6).

Substituting these into (4.6) and requiring all terms to have equal orders of
magnitude leads to ζ =(ξ − 2)/2 and ψ = (ξ + 2)/2, where ξ is taken to be arbitrary.
Thus,

dŷ = ε−(ξ−2)/2 dy+, dÛ = ε−ξdU+, dT̂ = ε−(ξ+2)/2dT . (4.8)

This leads to the properly scaled mean momentum balance near the peak in the
Reynolds stress profile

d2Û+

dŷ2
+

dT̂

dŷ
+ 1 = 0. (4.9)

The rescaled functions satisfy T̂ (0) = dT̂ /dŷ(0) = 0, d2Û+/dŷ2(0) = − 1. The region
of the boundary layer where this scaling holds is called the mesolayer, meaning that Û

and T̂ are regular functions of ŷ there. The mesolayer does not coincide exactly with
physical layer III because of the difference between T and T̃ , as described earlier.

An analogous scaling will be performed in § 4.4 for a whole continuum of patches.
It will be argued, based on other theories and empirical evidence, that the unknown
parameter ξ is probably either 0 or negative and small. In the following, it is assumed
that ξ =0, in which case the length scale in the mesolayer becomes dŷ = ε dy+. Thus,
the scaling in the mesolayer is intermediate between the inner scaling dy+ and the
outer scaling dη and specifically represents the geometric mean between these two
scales; i.e. ŷ = y/

√
δ (ν/uτ ), where δ denotes the integral (outer) length, and (ν/uτ )

denotes the viscous (inner) length. Appendix A shows theoretically that the location
of the mesolayer (y+

m ), and thus the peak in the modified Reynolds stress profile, is at
y+ =O(ε−1). This is also the same order of magnitude of the width of the mesolayer.
Importantly, this predicts that the location of the peak in T̃ scales like

√
δ+ as

δ+→ ∞; i.e. y+
m/

√
δ+ remains constant as Reτ → ∞. Experimental results presented in

§ 5.3 support this theoretical prediction.

4.4. The hierarchy of scales

In this section, a continuum or hierarchy of scales is shown to exist in the FPG
TBL, analogous to that in the channel flow as originally formulated by Fife et al.
(2005a , b). Furthermore, it is shown that this family of scaling patches covers the
entire boundary layer. The inner scale, mesoscale and outer scale, described above,
are associated with particular scaling domains (patches) embedded within, or at one
of the ends of, the hierarchy. For example rather than treating it as an a priori known
feature of the flow, the outer scaling region is considered the culminating scaling
patch at the edge of the hierarchy. A scaling patch is defined here as a region in
the flow field, specified by an interval of distances from the wall, wherein a ‘natural’
scaling exists that succeeds in removing Reynolds number trends in the normalized
variables. In contrast, ‘physical layers’ are regions in the flow characterized by the
types of forces in balance there. Each scaling patch has distinct scaling coefficients
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which convey, for example characteristic lengths and Reynolds stress increments at
that location. The locations of the patches and the characteristic length scale in each
patch are found in Appendices A and B, respectively.

To obtain the scale hierarchy, a family of adjusted Reynolds stresses is defined as

Tβ(y
+) ≡ T (y+) − T ∗(ε2y+, ε) − βy+, (4.10)

where T ∗(ε2y+, ε) is given by (4.3). Recall that η = ε2y+. The subscript β (not to be
confused with the equilibrium parameter identified by Bradshaw in § 1.1) parameterizes
the family and, as will be shown, also identifies the characteristic lengths in the
corresponding scaling patches. The locations of the patches are where Tβ(y

+) attain
their maxima. Inserting (4.10) into (4.1), while noting that dT ∗/dη = − b(η, ε), yields

d2U+

dy+2
+

dTβ

dy+
+ β = 0. (4.11)

Note (4.11) and (4.6) are identical for the case of ε = β1/2. As in the approach used
in the previous section, the variables in (4.11) will now be rescaled in order to remove
the explicit dependence of β in the differential equation. For each β in a range of
values that depends on δ+, the function Tβ(y

+) has a strict local maximum at some
point y+ = y+

m (β), also dependent on δ+. As in the channel (Fife et al. 2005a , b),
each potential scaling patch, denoted as Lβ , will be centred around the peak position
y+

m (β) of the associated adjusted Reynolds stress Tβ . From the previous analysis in
the mesolayer, the intrinsic scaling for the β patch is obtained from (4.8):

dy+ = β (ξ−2)/4dŷ, dTβ = β (ξ+2)/4dT̂ , Tβ = Tβm
+ β (ξ+2)/4T̂ . (4.12)

For the case of ξ =0, analogous to (4.8),

dy+ = β−1/2dŷ, dTβ = β1/2dT̂ , Tβ = Tβm
+ β1/2T̂ , (4.13)

where Tβm
= max (Tβ). In all cases, the scaling (4.12) leads to a parameter-free

differential equation:

d2U+

dŷ2
+

dT̂

dŷ
+ 1 = 0. (4.14)

The two derivatives shown in (4.14) take on known values at ŷ = y+
m , namely −1 and

0, respectively.
Although the patches are at different locations, the dynamics in each patch satisfy

(4.14), the same differential equation, when the variables in the patch are scaled
as given in (4.13). This suggests that the scaled profiles, in the various patches, bear
similarity to one another. Firstly, all the profile functions will have derivatives of order
O(1), as described earlier. Secondly, it is suggested that these derivatives themselves
are almost independent of β . It turns out that the range of the parameter β for
which this construction is allowed spans the interval (ε4, β0), where β0 = O(1), and
the locations of the patches, measured in the inner coordinate, span an interval from
the inner scaling region to the outer one. The length of this interval is O(ε−2), which
is large when ε is small.

Each potential patch (identified herein as Lβ) is centred around the peak position

y+
m (β) of the associated adjusted Reynolds stress Tβ . The curvature of T̂ at its peak

is, of course, given by the second derivative of T̂ evaluated at the local maximum of
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Tβ , namely at ŷ = 0,

A(β) ≡ d2T̂

dŷ2
(0). (4.15)

The order of magnitude of this quantity remains O(1) independent of β . In locations
far away from the endpoints of the range of the continuum of scaling patches, A

should be almost constant. The hypothesis is that since the differential equation is
parameter-independent, any variation in A due to changes in β will be caused only
by influence from neighbouring patches, hence ultimately from locations where the
boundary would introduce other, external influences in such a way as to disrupt the
similarity. Most likely, this would happen near the extrema of the continuum (i.e.
in the outer and inner regions of the boundary layer). That leaves interior regions
as candidates for places where A is nearly constant. It will be shown below that
those are the regions where the mean velocity profile exhibits logarithmic behaviour.
The extent (in inner units) of these regions will grow as ε becomes smaller (i.e. Reτ

increases). All these considerations were explored in the contexts of turbulent channel
and Couette flows (Fife et al. 2005a , b; Wei et al. 2005a), and they are now seen to
be valid in the FPG TBL case as well. The fact that the scale hierarchy is preserved
even in the boundary layer context with the addition of an FPG also suggests an
important similarity in the underlying physical structure of the FPG TBL compared
to canonical wall-bounded flows.

4.5. Conditions for logarithmic mean velocity profile

One of the hallmarks of the study of turbulent channel flow has been the recognition
that a portion of the mean velocity profile exhibits a logarithmic behaviour (Pope
2000). The analysis here, drawing upon the earlier work of Fife et al. (2005a , b) for
the channel flow, focuses on the conditions under which such a logarithmic velocity
profile will be realized in the FPG TBL. The simplest analysis, in this regard, occurs
when A(β) is constant. Straightforward calculations, as explained in Appendix A,
then show that U+ = C1 ln (y+ + C2), where C1, C2 are constants. The present data as
well as previous DNS and experimental studies support this calculation, as shown in
§ 5 as well as in figure 4 from Spalart (1986) and figure 5 from Jones et al. (2001).
Conversely, if A is not constant, then the profile will not be logarithmic. When A

is only approximately constant for a given range in β , the more likely circumstance,
then U+ will be approximately logarithmic for the corresponding range of y+.

5. Experimental results
Throughout this section, results are presented comparing non-equilibrium and

equilibrium flow. Typically, two plots are displayed side-by-side that distinguish
between (a) non-equilibrium effects at a fixed acceleration parameter, K = 3.7×10−7,
and (b) Reynolds number effects observed in the equilibrium regime. In the latter case,
the present experimental data are compared with the DNS data of Spalart (1986). In
the former case, the present experimental data are compared over a range of x/L (at
a fixed K). Since non-equilibrium effects at K = 5.6 × 10−7 were identical to those
observed at K = 3.7 × 10−7, only non-equilibrium data at the lowest K are shown.
Note for a sink-flow TBL in equilibrium, the Reynolds number is a function of the
acceleration parameter only (see (3.12) as well as figure 14 from Jones et al. 2001),
whereas in the non-equilibrium case, the Reynolds number is a function of both K

and x/L.
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Figure 13. Inner normalized mean streamwise velocity profiles showing (a) non-equilibrium
effects at K = 3.7 × 10−7 and (b) Reynolds number effects in the equilibrium case. Symbols
and thick lines are identified in table 1. The two thin black lines represent the linear profile
(U+ = y+, for y+ < 10) and logarithmic profile (U+ = 2.5 ln y+ + 5.0, for y+ > 10).

5.1. Mean and r.m.s. velocity profiles

The inner normalized mean profiles are shown in figure 13 in the format described
above. All of the experimental data, regardless of Reτ or x/L, exhibit a well-defined
logarithmic region. Both DNS data sets (Reτ = 285, 440) exhibit smaller logarithmic
regions that are slightly shifted upwards compared to the experimental data. This
demonstrates the fact that as Reτ decreases (or K increases), the mean profile tends
towards that expected for a laminar boundary layer. Narasimha & Sreenivasan (1979)
suggest that when the acceleration parameter increases to a value near K = 2.5×10−6,
the TBL approaches a relaminarized state; the data of Jones & Launder (1972)
support this. Note that although the present experimental data are forced to follow
the log law with constants as specified in figure 13 (due to the nature of the Clauser
method used to obtain uτ ), the behaviour of the present U+ profiles agrees very well
with those of Jones et al. (2001), who found that the Clauser method (using the same
constants) yields an accurate measure of uτ in the FPG TBL, at least over the range
of K investigated here. The present U+ data also support previous observations that
the wake component becomes negligible as the sink-flow TBL approaches equilibrium
(Coles 1957; Jones et al. 2001). In addition, the fact that the present U+ data for
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Figure 14. Inner normalized streamwise r.m.s. velocity profiles showing (a) non-equilibrium
effects at K = 3.7 × 10−7 and (b) Reynolds number effects in the equilibrium case. Symbols
and lines are as in table 1.

y+ < 8 fall slightly below the line representing a linear velocity profile (U+ = y+) is
consistent with the effect of a second-order correction due to the pressure gradient
term in the mean momentum balance, as discussed in § 4.1.

Figure 14 depicts the inner normalized r.m.s. velocity profiles for both the
equilibrium and non-equilibrium regimes. Near the wall (y+ < 10), all of the profiles,
excluding the lowest Reτ from the DNS data, appear to be independent of Reτ , x/L

and K . In figure 14(a), the peak value of u′+ (near y+ = 18) increases slightly with
x/L, as expected, since Reτ also increases accordingly with x/L. In the outer region
beyond the peak, the increase in u′+ with Reτ becomes more pronounced, and a
shoulder begins to emerge in the profile around y+ = 200. The location of the peak in
u′+ does not appear to depend on Reτ (or x/L) over the parameter range investigated
here. These trends are also observed in figure 14(b) for the equilibrium data. The
difference in Reynolds number between the DNS and experimental data is almost
an order of magnitude. Thus, it is not surprising that the peak u′+ from the DNS
data lies noticeably below that of the experimental data. In addition, no apparent
shoulder exists in the DNS profiles, which further indicates possible low Reτ effects in
the DNS data, similar to those discussed by Murlis, Tsai & Bradshaw (1982) for the
ZPG TBL and also noticeable in the log region of the U+ profiles shown in figure 13.

The corresponding outer normalized r.m.s. velocity profiles are shown in figure 15,
using semi-log coordinates along the abscissa. The equilibrium profiles (from the
experimental data) in figure 15(b) appear to be independent of Reτ for y/δ > 0.1.
Due to supposed low Reynolds number effects, the equilibrium DNS data do not
exhibit the same similarity in the outer region until further towards the edge of
the boundary layer, i.e. y/δ > 0.3. Figure 15(a) highlights the effect of x/L on u′+.
For reference, the solid black line in figure 15(a) represents the equilibrium data at
K = 5.6×10−7 (i.e. the same data as that marked by triangles in figure 15b). The value
of the Reynolds number associated with this line is 1170, which falls between that of
the diamonds (Reτ = 1018, x/L = 0.39) and the squares (Reτ = 1307, x/L = 0.54).
Note, the two data sets marked by the diamonds and squares are considered to be in
non-equilibrium, since x/L < 0.6. In the inner region (y/δ < 0.1), the equilibrium data
(solid black line) lies directly between the two non-equilibrium data sets (diamonds
and squares), suggesting that in the inner region the observed trends in figure 15(a)
are primarily due to Reynolds number effects and not due to the equilibrium state of
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Figure 15. Outer normalized streamwise r.m.s. velocity profiles showing (a) non-equilibrium
effects at K = 3.7 × 10−7 and (b) Reynolds number effects in the equilibrium case. Symbols
and lines are as in table 1, except that the solid black line in (a) and the triangles in (b)
represent the same equilibrium data at K = 5.6 × 10−7.
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Figure 16. Terms in the inner normalized mean momentum balance for an FPG TBL: (a)
DNS data at Reτ = 440 and (b) present data at Reτ = 540, x/L = 0.3. The terms are identified
in (3.1): — Fp , −− Ft , · · · Fa , − · − Fv .

the flow (i.e. x/L). In the outer region (y/δ > 0.1), on the other hand, the equilibrium
data at K = 5.6×10−7 (solid black line) follow the equilibrium data at K = 3.7×10−7

(circles), whereas the non-equilibrium data in the outer region have distinctly higher
u′+ values. This suggests that non-equilibrium effects are manifest predominantly in
the outer region of the flow. This observation is revisited further in the next two
sections.

5.2. Terms in the mean momentum balance

The terms in the mean momentum balance are shown in figure 16 for qualitative
purposes only, comparing the equilibrium DNS data at Reτ = 440 with the present
non-equilibrium experimental data at a similar Reynolds number, Reτ = 540, and
x/L = 0.29. The terms calculated from the experimental data resemble that of the
numerical data both in shape and magnitude, although the noise in the experimental
data, associated with the finite difference operation for estimating derivatives, is
clearly visible. The lack of Ft data for y+ < 18 is due to the physical limitations of
positioning the x-array probe in close proximity with the wall. The data in figure 16
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Figure 17. Ratio of the viscous stress gradient to the Reynolds stress gradient as a function
of y+ for the DNS and experimental data (equilibrium case only). Symbols are as in table 1,
except the grey lines, which represent the expected behaviour of the experimental data at
Reτ = 1170 and Reτ = 1646.

show that the viscous and Reynolds stress gradients dominate the flow near the
wall until y+ ≈ 30, whereafter a clear exchange of balance occurs (across layer III)
such that the mean advection (inside the boundary layer) and the pressure gradient
become the dominating terms near the outer edge of the boundary layer. Interestingly,
this exchange at y+ ≈ 30 corresponds to the point in figure 13 at which the inner
normalized mean velocity profile begins to be characterized by the log law. The
location of this exchange also corresponds with the peak in the Reynolds shear stress
profile (i.e. the zero crossing of Ft ). Note, as ε → 0, the magnitude of the inner
normalized pressure gradient term Fp moves closer towards zero, but the exchange
of balance is preserved.

Based on the observations in figure 16 regarding the balance of terms in the mean
momentum equation, it is useful to examine the ratio of the two stress gradient terms.
Figure 17 displays this ratio for the equilibrium cases only; the solid and dashed
grey curves correspond to the expected behaviour of the ratio (based on the theory
presented in § 4) for the experimental data at Reτ = 1646 and 1170, respectively. In
particular, the theory predicts that as Reτ → ∞, Fv/Ft → −1 in layer II, where the
predominant balance occurs between the viscous and Reynolds stress gradients. Since
Reynolds stress measurements are difficult to obtain near the wall, no experimental
data exist for Ft in layer II. As the Reynolds stress profile approaches its peak
value y+

peak , the Reynolds stress gradient Ft approaches a zero crossing such that
Fv/Ft → ∞ (in layer III). Therefore, the location of the peak in the Reynolds stress
profile appears as an asymptote in the plot of Fv/Ft and represents the transition point
for the balance exchange. The location of this asymptote appears to shift towards
higher y+ as the Reynolds number increases. This indicates that layer II, where the
predominant balance exists between the viscous and Reynolds stress gradients, grows
in viscous units as the Reynolds number increases.

The mean advection term, Fa , may be separated into horizontal (U+∂U+/∂x+)
and vertical (V +∂U+/∂y+) components. Figure 18 shows the magnitude of these two
components as a function of x/L for the case of K = 3.7 × 10−7. The dashed lines in
figure 18(a) represent the total mean advection. The vertical advection of momentum
is, as expected, directed towards the wall. At the edge of the boundary layer, the
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Figure 18. Profiles of (a) horizontal advection and (b) vertical advection for the case of
K = 3.7 × 10−7. Symbols are as in table 1. The dashed lines indicate the total mean advection
(sum of the horizontal and vertical components).

vertical advection goes to zero (regardless of x/L) due to the boundary condition
∂U+/∂y+ = 0 at y/δ = 1. Therefore, the vertical advection profiles appear to be
independent of x/L near the edge of the boundary layer. As the flow approaches
equilibrium, the location of the minimum in the vertical advection component appears
to migrate toward the wall (in terms of outer units) from y/δ ≈ 0.6 at x/L = 0.29
to y/δ ≈ 0.3 at x/L = 0.66. Furthermore, as the flow approaches equilibrium, the
vertical component of the advection increases in absolute magnitude and can be as
much as 15 % of the total advection. In addition, as the flow progresses towards
equilibrium, the horizontal advection component becomes flatter in the outer region
(y/δ > 0.1) and increases in magnitude across the entire boundary layer, due to the
fact that Reτ increases simultaneously with x/L, resulting in an overall increase in
U+

o .
After examining the nature of the separate components of the mean advection, it

is useful to examine its behaviour with respect to the advection at the edge of the
boundary layer, i.e. with respect to the pressure gradient term Fp . Figure 19 shows
this ratio, α, defined in (3.2), as a function of y/δ for both the non-equilibrium and
equilibrium regimes. The experimental data are consistent with the theory (§ 3.1) in
that α = 0 at y = 0 and α = 1 at y/δ = 1, ensuring Fa = Fp at the edge of the
boundary layer, and that α increases monotonically with y/δ. Note that undulations
in the α profiles are presumedly due to noise caused by numerical differentiation of
the experimental data. Despite the noise, several observations can be made. First,
the equilibrium α profiles appear to be independent of Reτ towards the edge of the
boundary layer (y/δ > 0.2). Also for the equilibrium case, the near-wall slope of α

increases dramatically with Reτ , indicating that the increase in α in the near-wall
region accounts for the Reynolds number dependence of α, as shown previously in
figure 9. Due to this effect, the region wherein the mean advection approximately
balances the pressure gradient (layer IV) expands in outer units with Reτ , i.e. layer IV
appears to extend further towards the wall in terms of y/δ as Reτ increases.

At this point, a hypothesis regarding the equilibrium sink-flow TBL emerges based
entirely on observations of the data. Since layer II (the region where the Reynolds and
viscous stress gradients approximately balance) grows in viscous units, while layer IV
(the region in which the mean advection and pressure gradient approximately balance)
grows in outer units with increasing Reτ , it may be hypothesized that layer III (where
an exchange of balance occurs) must grow like the arithmetic mean between the inner
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Figure 19. Profiles of α showing (a) non-equilibrium effects at K = 3.7 × 10−7 and (b)
Reynolds number effects in the equilibrium case. Symbols and lines are as in table 1.

and outer units. This scenario, in fact, is predicted by the present multi-scale theory,
as described in § 4.3, and further substantiated by the present Reynolds stress results
shown in the next section.

Non-equilibrium effects in the α profiles at a fixed K are displayed in figure 19(a).
Recall that the equilibrium data marked by the triangles in figure 19(b) are
characterized by Reτ = 1170, which lies halfway between the Reynolds numbers
of the non-equilibrium data in figure 19(a) marked by the diamonds (Reτ = 1018,
x/L = 0.39) and the squares (Reτ = 1307, x/L = 0.54). These combined data reveal
that αnon <αeq for all y/δ, except at the boundaries where the value of α remains fixed.
The subscripts represent ‘non-equilibrium’ and ‘equilibrium’ behaviour, respectively.
The discrepancy between the non-equilibrium and equilibrium data is particularly
evident in the inner region of the boundary layer (y/δ < 0.15). For example, at a
similar Reynolds number of about 1200 (although different K), the difference in the
values of α at y/δ ≈ 0.07 between the equilibrium (triangles) and non-equilibrium
(diamonds and squares) data is about 16 %. This discrepancy due to non-equilibrium
effects, however, does not appear to influence the turbulence statistics in the inner
region of the boundary layer (see figure 14a), most likely due to the fact that the mean
advection term does not play a significant role in the mean dynamics there. In the
outer region (y/δ > 0.15), on the other hand, mean advection dominates, and so even
a small discrepancy in the value of α between the equilibrium and non-equilibrium
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Figure 20. Inner normalized Reynolds stress profiles from the present data at K = 3.7×10−7

(open symbols and solid lines) and DNS data at Reτ = 440 (solid symbols and dotted
line). The open symbols and solid lines are matched according to their greyscale, where each
greyscale/symbol represents a different Reτ , as listed in table 1. The open symbols were
obtained by direct measurement from the x-array, whereas the solid lines were obtained from
the u profile measurements, using the integrated mean momentum balance in (5.1). For the
DNS data, the solid symbols represent 〈uv〉+, as directly computed in the simulation, and the
dashed line represents the same quantity calculated using (5.1).

data at similar Reτ (6 % difference in α at y/δ ≈ 0.7) leads to noticeable effects in
the turbulence statistics in the outer region (see figure 14a).

5.3. Reynolds shear stress profiles

In this section, the present experimental data are compared with two particular aspects
of the multi-scale theory: (i) the location of the peak in the modified Reynolds stress
profile, as defined in § 4.3, and (ii) the decay of the inner normalized Reynolds stress
in the outer region of the boundary layer, as described in § 4.2. Direct measurements
of the Reynolds stress by the x-array probe are compared to that obtained indirectly
by integrating the mean momentum balance (4.1), which gives

〈uv〉+ = 1 − dU+

dy+
− ε2

∫ y+

0

b(s) ds. (5.1)

The last two terms on the right-hand side of (5.1) are calculated using simultaneous
data from the upstream and downstream normal-wire probes (see figure 3). The direct
(x-array) and indirect (integral momentum) methods of obtaining 〈uv〉+ are shown in
figure 20 for the case of K = 3.7 × 10−7. The equilibrium DNS profile at Reτ = 440 is
also displayed for comparison. With the DNS data, the direct and indirect methods
yield nearly identical results across the entire boundary layer. However, for the
experimental data, the two methods only agree far from the wall (approximately
y+ > 200 for the cases shown). Near the peak in the experimental profiles, large
discrepancies exist between the two methods. Insufficient spatial resolution of the
x-array probe, as well as possible interference by the probe support frame in the
proximity of the wall, is believed to play a role in artificially lowering the measured
〈uv〉 values near the peak in the profile.

In the case of channel flow, one expects the peak in the Reynolds stress profile
to increase with Reτ , approaching unity as Reτ → ∞ (Wei et al. 2005a , b). In the
present equilibrium sink-flow data, however, the magnitude of the peak at Reτ = 1646
(K = 3.7 × 10−7, denoted by the circles in figure 20) measures 4.7 % lower than the
peak at Reτ = 1170 (K = 5.6 × 10−7, data not shown). Furthermore, the peak in the
equilibrium profile at Reτ = 1170 lies 7.7 % below that of the non-equilibrium data at
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Figure 21. Scaling in the mesolayer: (a) location of peak in T̃ as defined in (4.4) versus Reτ ,
(b) location of peak in −〈uv〉+ versus Reτ , (c) location of peak in −〈uv〉+ versus (1 − α)Reτ .
Solid symbols are for the equilibrium case only (combined DNS and present experimental
data). Open symbols are the present non-equilibrium data: K(×107) = 5.6 �, 3.7 �. The solid
black lines represent a slope of 1/2 and the dotted black line represents a slope of 1/3.

similar Reτ (albeit different acceleration strength). Table 1 lists the inner normalized
separation distance between the two wires of the x-array (d+

w ), which is the same as
the active length of the individual wires (�+

w). These values range between 5.8 and 16.1
for the test cases examined here. The wire spacing normalized by the Kolmogorov
length scale (estimated using the time series from the downstream normal wire in
conjunction with Taylor’s hypothesis and the assumption of isotropic turbulence)
remained less than 5 for all values of y/δ, x/L and Reτ (i.e. d∗

w < 5 in all cases).
Park & Wallace (1993) show that at y+ ≈ 30 in a ZPG TBL with Reθ ≈ 2700
(where θ denotes the momentum thickness), the magnitude of 〈uv〉 obtained from
an x-array probe (having d+

w = 9) is 3 % smaller than the ‘true’ Reynolds stress, as
measured using the nine-wire probe of Ballint, Wallace & Vukoslavcevic (1991). The
study of Zhu & Antonia (1995) recommends d∗

w = 2–3 in order to achieve reasonable
results for the Reynolds stresses. Interestingly, though, a noticeable dip occurs in the
Reynolds stress profile of Zhu & Antonia (1995) (their figure 11c) at the location
of the expected peak, despite their adherence to the criterion of d∗

w = 2–3. Because
of this, one might overestimate the location of the peak in their data by as much
as 10 viscous units, based on their x-array data alone (i.e. y+

peak = 40 compared to

y+
peak = 30 as indicated by the corresponding numerical simulation). In the present

study, the location of the peak measured by the x-array can be shifted by as much
as 20 viscous units (and more at the highest Reτ ) compared to that indicated by the
integrated mean momentum balance.

The Reynolds number dependencies of y+
peak (defined as the location of the peak

in 〈uv〉+) and y+
m (defined as the location of the peak in the modified Reynolds

stress, T̃ ) are shown in figure 21, based on the indirect method of measuring 〈uv〉+

as described above. Recall that the modified Reynolds stress was introduced in (4.4)
in order to develop the proper scaling for the mean momentum balance in the
mesolayer. Specifically, the multi-scale theory predicted y+

m ∝ (Reτ )
1/2, assuming an

x+-independence of the mean momentum balance and, therefore, only strictly holds
for the equilibrium regime. However, the same analysis may be performed for any
given x+ and an identical result obtained. Thus, the scaling properties of y+

m should
not depend on whether the flow has reached equilibrium.

Power law relationships are indicated in figure 21 by the solid (slope = 1/2) and
dashed (slope = 1/3) lines. Figure 21(a) reveals that all of the DNS and experimental
data (both equilibrium and non-equilibrium) support the theoretical prediction that
y+

m ∝ Re1/2
τ . Since the modified Reynolds stress is not a physical quantity, though,
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Figure 22. Inner normalized Reynolds stress versus y/δ showing (a) non-equilibrium effects
at K = 3.7 × 10−7 and (b) Reynolds number effects in the equilibrium case. Symbols and lines
are as in table 1. Experimental data represent the x-array measurements. The thin black lines
correspond to T ∗ from (4.3) and were obtained by integrating the corresponding α profiles. In
(b), T ∗ is based on the DNS data at Reτ = 440.

figure 21(b) displays the peak in the actual Reynolds stress profile as a function of Reτ .
Except for the lowest Reynolds number, all of the data indicate that y+

peak ∝ Re1/3
τ .

Finally, figure 21(c) compares the same data versus an adjusted Reynolds number,
i.e. (1 − α)Reτ . Except for the lowest Reynolds number, all of the data support
y+

peak ∝ [(1 − α)Reτ ]
1/2. An important observation is that neither the peak in the

Reynolds stress profile nor the peak in the modified Reynolds stress profile appears to
depend on the state of equilibrium of the flow and only depends on the local Reynolds
number. This lends further support to the previous observation that equilibrium effects
primarily influence the flow dynamics in the outer region (layer IV) only. Reynolds
stress measurements in the outer region (described below) also substantiate this point.

The outer normalized Reynolds stress profiles (measured by the x-array probe)
are shown in figure 22 compared to the theoretical prediction of the decay of the
Reynolds stress in the outer region, T ∗, as defined in (4.3). The thin black curves
in the plots demonstrate this theoretical prediction for the different cases shown. In
figure 22(b), only one theoretical curve is drawn, corresponding to the DNS data
at Reτ = 440, because the T ∗ based on the experimental data falls directly on top
of it. Importantly, − 〈uv〉+

(symbols and thick black lines) and T ∗ (thin black lines)
were obtained by entirely independent means, that is − 〈uv〉+

was measured from
the x-array probe, while T ∗ was calculated from (4.3) using measurements from the
upstream and downstream normal-wire probes (see figure 3).

The theory is observed to represent the Reynolds stress extremely well in the outer
region of the flow (y/δ > 0.15), regardless of the equilibrium state of the flow. Closer
to the wall, an exchange of balance of forces occurs, so that T ∗ is not expected to
be an accurate representation of 〈uv〉+ for y/δ < 0.15. Figure 22(a) illustrates that
as x/L progresses towards 0.6 (equilibrium), the magnitude of 〈uv〉+ decreases across
the entire outer region, approaching its final equilibrium profile at x/L ≈ 0.6. The
magnitude of 〈uv〉+ decreases fastest with x/L in the wall-normal region between
0.15 < y/δ < 0.4 and appears to converge to the equilibrium profile slower in the
region 0.5 � y/δ � 1. The equilibrium data (figure 22b) appear to be independent
of Reτ in the outer region. The significance of this observation is that the low
Reynolds number DNS data may be used to predict the equilibrium behaviour at
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high Reynolds number, at least in the outer region in which the theoretical T ∗ is valid.
Interestingly, Coles (1957) predicted this Reynolds-number-independent behaviour for
equilibrium sink-flow TBLs half a century ago, by considering the integral momentum
equation that assumes a logarithmic form of the mean velocity profile with zero wake
component. Due to the lack of non-equilibrium DNS data and the limited range of
Reτ in the present experiments, it is not clear whether the same Reynolds number
independence of 〈uv〉+ in the outer region exists at every given x/L.

6. Conclusions
From a practical engineering design standpoint, there is great interest in the

development of a unified framework for predicting scaling properties for large classes
of different TBLs involving effects of non-equilibrium, pressure gradient, surface
roughness and thermal stratification, among others. The approach described herein,
based on a multi-scale analysis of the terms in the mean momentum balance, shows
promise in this direction. In particular, there is no a priori assumption of a scaling
structure, as used in classical overlap arguments (Millikan 1939); however, scaling
patches appear naturally in the present theory from a proper rescaling of the terms
in the mean momentum balance across different regions of the boundary layer. The
present study serves to verify that the multi-scale approach in the previous work of
Fife et al. (2005 b) and Wei et al. (2005a), for canonical wall-bounded flows, also
extends to TBLs with moderately Favourable pressure gradients.

One of the key features in making the extension from canonical wall flows to the
FPG boundary layer is modelling the mean advection inside the boundary layer as a
fraction of the pressure gradient that drives the potential flow outside the boundary
layer. This allows one to recast the force balance for the FPG TBL into a form
similar to that of the canonical wall-bounded flows. The main predictions from the
present work are threefold: (i) intermediate scaling of the location of the peak in the
Reynolds stress, (ii) the rate of decay of the Reynolds stress in the outer region and
(iii) the existence of a hierarchy of scales which leads, in certain limits, to a logarithmic
mean velocity profile and scaling with distance from the wall. Well-resolved hot-wire
data, coupled with the previous DNS data of Spalart (1986), provided a means for
evaluating the predictions of the multi-scale theory for the specific case of sink-flow
TBLs (i.e. flow through a wedge). The probe configuration in the experiments allowed
all of the terms in the mean momentum balance to be measured directly as functions
of both the wall-normal and streamwise coordinates. In the experiments, the boundary
layer was observed to be in a non-equilibrium state near the facility entrance and
progressed downstream to an equilibrium state, wherein all memory of the upstream
flow history had been lost, i.e. in an equilibrium state, the turbulence profiles exhibited
self-similarity, at least in the outer region.

In addition to verifying the theoretical predictions listed above, the data revealed
that non-equilibrium effects predominantly influence the turbulence in the outer
region, whereas trends in the behaviour of the inner region turbulence are attributed
solely to local Reynolds number effects, regardless of the equilibrium/non-equilibrium
state of the boundary layer. The reason for the former is believed to stem from the
advection term in the mean momentum balance, which requires a certain development
length in order for the inertia of the outer region fluid to reach its maximum (x+-
independent) value at equilibrium. This saturation point of the mean advection
appears to coincide with the location at which ‘mean’ entrainment of potential
flow into the boundary layer ceases, analogous to the well-known situation of fully
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developed flow in a two-dimensional channel with parallel walls. On the other hand,
since advection plays such a negligible role in the mean dynamics of the inner region,
non-equilibrium effects do not significantly influence the turbulence near the wall.

The authors gratefully acknowledge the support of the Office of Naval Research
(ONR) (N00014–04–1–0304; R. Joslin, grant monitor).

Appendix A. Locations of the Lβ

The scaling patch locations y+
m (β) are determined as locations of the peaks in Tβ ,

which in turn are derivable in terms of the actual Reynolds stress T (y+). From (4.10)
and using the fact that dTβ/dy+ =0 at y+ = y+

m (β), one obtains

dT (y+
m (β))

dy+
= β − ε2 b(y+

m (β)). (A 1)

Differentiating (A 1) with respect to β gives

d2T (y+
m (β))

dy+2

dy+
m

dβ
= 1 − ε2 b′(y+

m (β))
dy+

m

dβ
. (A 2)

Also by combining (4.10), (4.13) and (4.15) gives

d2T (y+
m (β))

dy+2
= −A(β) β3/2 − ε2 b′(y+

m (β)). (A 3)

By substituting (A 3) into (A 2) and rearranging, one finds that the β-dependent
position of the peak location of each Tβ(y

+) (centred in each Lβ) satisfies

dy+
m (β)

dβ
= − 1

A(β)
β−3/2. (A 4)

In principle, if A(β) were known, (A 4) could be solved to give y+
m (β) as a function

of β , with an integration constant C. Then the relation could be inverted to obtain β

as a function of y+
m (β) and C. Next, one would integrate (A 1), with y+

m (β) replaced by
the symbol y+, to get T (y+) (with a second integration constant). The last step would
be to integrate (4.1) twice to obtain U+(y+). Although A(β) is not known explicitly,
certain properties are evident and advantageous for discerning characteristics of the
mean velocity and Reynolds stress profiles, as well as the locations of the patches, as
described in Appendix B.

Appendix B. Scaling with distance from the wall
Information regarding the locations of the patches Lβ can be learned by integrating

(A 4) in an order of magnitude sense. Let �(β) denote the characteristic length in the
patch Lβ , which will also be the order of magnitude of the width of that patch. From
(4.13) and (A 4), one sees that �(β) = O(β−1/2) and dy+

m/dβ = − O(β−3/2). Integrating
the latter reveals that � is asymptotically (as y+→ ∞) proportional to y+ itself,
i.e.

� ≈ y+. (B 1)

A particular case is that of the mesolayer patch (§ 4.3), for which � = O(ε−1). Inverting
(B 1) shows that the mesolayer is located at an inner normalized distance O(ε−1) from
the wall. This is also the location of the peak in T̃ (4.4). Models built upon the
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hypothesis that length scales in the mean flow are proportional to distance from the
wall have been proposed in the past (Prandtl 1925; Townsend 1976). The present
method, proceeding without that hypothesis, indicates why and in what respect that
proportionality rule is valid.
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